1,383 research outputs found

    Probing the Radio Loud/Quiet AGN dichotomy with quasar clustering

    Get PDF
    We investigate the clustering properties of 45441 radio-quiet quasars (RQQs) and 3493 radio-loud quasars (RLQs) drawn from a joint use of the Sloan Digital Sky Survey (SDSS) and Faint Images of the Radio Sky at 20 cm (FIRST) surveys in the range 0.3<z<2.30.3<z<2.3. This large spectroscopic quasar sample allow us to investigate the clustering signal dependence on radio-loudness and black hole (BH) virial mass. We find that RLQs are clustered more strongly than RQQs in all the redshift bins considered. We find a real-space correlation length of r0=6.59−0.24+0.33 h−1 Mpcr_{0}=6.59_{-0.24}^{+0.33}\,h^{-1}\,\textrm{Mpc} and r0=10.95−1.58+1.22 h−1 Mpcr_{0}=10.95_{-1.58}^{+1.22}\,h^{-1}\,\textrm{Mpc} {\normalsize{}for} RQQs and RLQs, respectively, for the full redshift range. This implies that RLQs are found in more massive host haloes than RQQs in our samples, with mean host halo masses of ∼4.9×1013 h−1 M⊙\sim4.9\times10^{13}\,h^{-1}\,M_{\odot} and ∼1.9×1012 h−1 M⊙\sim1.9\times10^{12}\,h^{-1}\,M_{\odot}, respectively. Comparison with clustering studies of different radio source samples indicates that this mass scale of ≳1×1013 h−1 M⊙\gtrsim1\times10^{13}\,h^{-1}\,M_{\odot} is characteristic for the bright radio-population, which corresponds to the typical mass of galaxy groups and galaxy clusters. The similarity we find in correlation lengths and host halo masses for RLQs, radio galaxies and flat-spectrum radio quasars agrees with orientation-driven unification models. Additionally, the clustering signal shows a dependence on black hole (BH) mass, with the quasars powered by the most massive BHs clustering more strongly than quasars having less massive BHs. We suggest that the current virial BH mass estimates may be a valid BH proxies for studying quasar clustering. We compare our results to a previous theoretical model that assumes that quasar activityComment: 15 pages, 13 figures, A&A in pres

    A jet-cloud interaction in 3C34 at redshift z = 0.69

    Get PDF
    We report the detection of a strong jet-cloud interaction at a distance of 120 kpc from the nucleus of the radio galaxy 3C34, which has redshift z=0.69. Hubble Space Telescope images of the radio galaxy show a long narrow region of blue emission orientated along the radio axis and directed towards a radio hotspot. The William Herschel Telescope has been used to provide long-slit spectroscopic data of this object, and infrared observations made with the United Kingdom InfraRed Telescope have enabled its spectral energy distribution to be modelled. We propose that the aligned emission is associated with a region of massive star-formation, induced by the passage of the radio jet through a galaxy within the cluster surrounding 3C34. A star-formation rate of about 100 solar masses per year is required, similar to the values necessary to produce the alignment effect in high-redshift radio galaxies. The consequences of this result for models of star formation in distant radio galaxies are discussed.Comment: 12 pages including 11 figures, LaTeX. To appear in MNRA

    Simulations of the Galaxy Cluster CIZA J2242.8+5301 I: Thermal Model and Shock Properties

    Get PDF
    The giant radio relic in CIZA J2242.8+5301 is likely evidence of a Mpc sized shock in a massive merging galaxy cluster. However, the exact shock properties are still not clearly determined. In particular, the Mach number derived from the integrated radio spectrum exceeds the Mach number derived from the X-ray temperature jump by a factor of two. We present here a numerical study, aiming for a model that is consistent with the majority of observations of this galaxy cluster. We first show that in the northern shock upstream X-ray temperature and radio data are consistent with each other. We then derive progenitor masses for the system using standard density profiles, X-ray properties and the assumption of hydrostatic equilibrium. We find a class of models that is roughly consistent with weak lensing data, radio data and some of the X-ray data. Assuming a cool-core versus non-cool-core merger, we find a fiducial model with a total mass of 1.6×1015 M⊙1.6 \times 10^{15}\,M_\odot, a mass ratio of 1.76 and a Mach number that is consistent with estimates from the radio spectrum. We are not able to match X-ray derived Mach numbers, because even low mass models over-predict the X-ray derived shock speeds. We argue that deep X-ray observations of CIZA J2242.8+5301 will be able to test our model and potentially reconcile X-ray and radio derived Mach numbers in relics.Comment: 19 pages, 19 figure

    Deep VLT spectroscopy of the z=2.49 Radio Galaxy MRC 2104-242: Evidence for a metallicity gradient in its extended emission line region

    Get PDF
    We present spectroscopic observations of the rest-frame UV line emission around radio galaxy MRC 2104-242 at z=2.49, obtained with FORS1 on VLT Antu. The morphology of the halo is dominated by two spatially resolved regions. Lya is extended by >12 arcsec along the radio axis, CIV and HeII are extended by ~8 arcsec. The overall spectrum is typical for that of high redshift radio galaxies. The most striking spatial variation is that NV is present in the spectrum of the region associated with the center of the galaxy hosting the radio source, the northern region, while absent in the southern region. Assuming that the gas is photoionized by a hidden quasar, the difference in NV emission can be explained by a metallicity gradient within the halo. This is consistent with a scenario in which the gas is associated with a massive cooling flow or originates from the debris of the merging of two or more galaxies.Comment: Accepted for publication in A&A Letter

    Multiple density discontinuities in the merging galaxy cluster CIZA J2242.8+5301

    Full text link
    CIZA J2242.8+5301, a merging galaxy cluster at z=0.19, hosts a double-relic system and a faint radio halo. Radio observations at frequencies ranging from a few MHz to several GHz have shown that the radio spectral index at the outer edge of the N relic corresponds to a shock of Mach number 4.6+/-1.1, under the assumptions of diffusive shock acceleration of thermal particles in the test particle regime. Here, we present results from new Chandra observations of the cluster. The Chandra surface brightness profile across the N relic only hints to a surface brightness discontinuity (<2-sigma detection). Nevertheless, our reanalysis of archival Suzaku data indicates a temperature discontinuity across the relic that is consistent with a Mach number of 2.5+/-0.5, in agreement with previously published results. This confirms that the Mach number at the shock traced by the N relic is much weaker than predicted from the radio. Puzzlingly, in the Chandra data we also identify additional inner small density discontinuities both on and off the merger axis. Temperature measurements on both sides of the discontinuities do not allow us to undoubtedly determine their nature, although a shock front interpretation seems more likely. We speculate that if the inner density discontinuities are indeed shock fronts, then they are the consequence of violent relaxation of the dark matter cores of the clusters involved in the merger.Comment: 11 pages, 11 figures. Accepted for publication in MNRA

    Cosmic downsizing of powerful radio galaxies to low radio luminosities

    Get PDF
    At bright radio powers (P1.4GHz>1025P_{\rm 1.4 GHz} > 10^{25} W/Hz) the space density of the most powerful sources peaks at higher redshift than that of their weaker counterparts. This paper establishes whether this luminosity-dependent evolution persists for sources an order of magnitude fainter than those previously studied, by measuring the steep--spectrum radio luminosity function (RLF) across the range 1024<P1.4GHz<102810^{24} < P_{\rm 1.4 GHz} < 10^{28} W/Hz, out to high redshift. A grid-based modelling method is used, in which no assumptions are made about the RLF shape and high-redshift behaviour. The inputs to the model are the same as in Rigby et al. (2011): redshift distributions from radio source samples, together with source counts and determinations of the local luminosity function. However, to improve coverage of the radio power vs. redshift plane at the lowest radio powers, a new faint radio sample is introduced. This covers 0.8 sq. deg., in the Subaru/XMM-Newton Deep Field, to a 1.4 GHz flux density limit of S1.4GHz≥100 μS_{\rm 1.4 GHz} \geq 100~\muJy, with 99% redshift completeness. The modelling results show that the previously seen high-redshift declines in space density persist to P1.4GHz<1025P_{\rm 1.4 GHz} < 10^{25} W/Hz. At P1.4GHz>1026P_{\rm 1.4 GHz} > 10^{26} W/Hz the redshift of the peak space density increases with luminosity, whilst at lower radio luminosities the position of the peak remains constant within the uncertainties. This `cosmic downsizing' behaviour is found to be similar to that seen at optical wavelengths for quasars, and is interpreted as representing the transition from radiatively efficient to inefficient accretion modes in the steep-spectrum population. This conclusion is supported by constructing simple models for the space density evolution of these two different radio galaxy classes; these are able to successfully reproduce the observed variation in peak redshift.Comment: 7 pages, 6 figures; accepted for publication in Astronomy & Astrophysic
    • …
    corecore